CHƯƠNG 1. NHỮNG KIẾN THỨC CƠ BẢN

Màu nền
Font chữ
Font size
Chiều cao dòng

CHƯƠNG 1. NHỮNG KIẾN THỨC CƠ BẢN

1.1. Khái niệm về định vị điểm

Mặt đất tự nhiên là bề mặt vật lý phức tạp, nhìn toàn cảnh trái đất gần giống quả cầu nước khổng lồ với hơn 2/3 diện tích bề mặt là đại dương và phần diện tích còn lại là lục địa, hải đảo. Trên mặt đất có chỗ cao trên 8km (đỉnh Chomoluma dẫy Hymanaya); dưới đại dương có nơi sâu dưới -11km (hố Marian ở Thái Bình Dương). Độ cao trung bình của lục địa so với mực nước đại dương khoảng +875m.

Để nghiên cứu trái đất và biểu diễn nó trên mặt phẳng, trắc địa phải tiến hành đo đạc mặt đất. Công tác trắc địa này thực chất là xác định vị trí các điểm đặc trưng của bề mặt đất trong hệ quy chiếu tọa độ nào đó và có thể hiểu đó là định vị điểm. Vị trí các điểm trên mặt đất được xác định bởi thành phần tọa độ mặt bằng và độ cao.

1.2. Mặt thuỷ chuẩn và hệ độ cao

Độ cao là thành phần quan trọng để xác định vị trí không gian của các điểm trên mặt đất, để có độ cao các điểm ta phải xác định các mặt chuẩn quy chiếu độ cao.

1.2.1. Mặt thủy chuẩn

Mặt nước biển trung bình ở trạng thái yên tĩnh, tưởng tượng kéo dài xuyên qua các lục địa, hải đảo tạo thành bề mặt khép kín được gọi là mặt thủy chuẩn trái đất. Mỗi quốc gia trên cơ sở số liệu quan trắc mực nước biển nhiều năm từ các trạm nghiệm triều đã xây dựng cho mình một mặt chuẩn độ cao riêng gọi là mặt thủy chuẩn gốc

Tại mọi điểm trên mặt thủy chuẩn gốc, phương đường dây dọi (phương trọng lực) luôn trùng với phương pháp tuyến. Vì vật chất phân bố không đồng đều trong lòng trái đất nên phương đường dây dọi tại các điểm trên mặt thủy chuẩn gốc không hội tụ về tâm quả đất đã làm cho bề mặt này gồ ghề, gợn sóng và đây cũng chỉ là bề mặt vật lý. Trong trắc địa sử dụng mặt thủy chuẩn làm mặt chuẩn độ cao.

Các mặt thủy chuẩn song song với mặt thủy chuẩn gốc được gọi là mặt thủy chuẩn quy ước, có vô số mặt thủy chuẩn quy ước.

1.2.2. Hệ thống độ cao

Độ cao tuyệt đối của một điểm trên mặt đất là khoảng cách theo phương đường dây dọi từ điểm đó đến mặt thủy chuẩn gốc. Ở hình 1.1, độ cao tuyệt đối của điểm A và B tương ứng là đoạn HA và HB có trị số dương, còn hiệu độ cao giữa chúng gọi là độ chênh cao hAB.

Ở Việt Nam hệ độ cao tuyệt đối (độ cao thường) lấy mặt thủy chuẩn gốc là mặt nước biển trung bình qua nhiều năm quan trắc tại trạm nghiệm triều Hòn Dấu (Đồ Sơn, Hải Phòng). Độ cao các điểm lưới khống chế nhà nước, độ cao trong các loại bản đồ địa hình, địa chính và các công trình trọng điểm nhà nước đều phải gắn với hệ độ cao tuyệt đối này.

Độ cao tương đối của một điểm (độ cao quy ước hay độ cao giả định) là khoảng cách theo phương đường dây dọi từ điểm đó tới mặt thủy chuẩn quy ước. Ở hình 1.1, nếu chọn mặt thủy chuẩn đi qua điểm B là mặt thủy chuẩn quy ước thì độ cao quy ước của điểm A là đoạn hAB.

Các công trình quy mô nhỏ, xây dựng ở nơi hẻo lánh xa hệ thống độ cao nhà nước thì có thể dùng độ cao quy ước. Trong xây dựng công trình công nghiệp và dân dụng người ta thường chọn mặt thủy chuẩn quy ước là mặt phẳng nền nhà tầng một.

1.3. Hệ toạ độ địa lý

Hệ tọa độ địa lý nhận trái đất là hình cầu với gốc tọa độ là tâm trái đất, mặt phẳng kinh tuyến gốc qua đài thiên văn Greenwich ở nước Anh và mặt phẳng vĩ tuyến gốc là mặt phẳng xích đạo ( hình 1.2). Một điểm trên mặt đất trong hệ tọa độ địa lý được xác định bởi hai thành phần tọa độ là độ vĩ địa lý ϕ và độ kinh địa lý λ. Độ vĩ địa lý của điểm M là góc hợp bởi phương đường dây dọi đi qua điểm đó với mặt phẳng xích đạo. Độ vĩ nhận giá trị 0o ở xích đạo và 90o ở hai cực. Các điểm trên mặt đất có độ vĩ bắc hay nam tùy thuộc chúng nằm ở bắc hay nam bán cầu.

Độ kinh địa lý của một điểm là góc nhị diện hợp bởi mặt phẳng kinh tuyến gốc và mặt phẳng kinh tuyến đi qua điểm đó. Độ kinh địa lý nhận giá trị từ 0o đến 180o và tùy thuộc vào điểm đang xét nằm ở đông hay tây bán cầu mà nó có độ kinh tương ứng là độ kinh đông hay độ kinh tây.

Hệ tọa độ địa lý dùng để xác định vị trí các điểm trên mặt đất, nó có ưu điểm là thống nhất cho toàn bộ quả đất nhưng nhược điểm là tính toán phức tạp. Một số ngành sử dụng hệ tọa độ này như: thiên văn, hàng không, hàng hải, khí tượng thủy văn…

Trong trắc địa cao cấp, mặt cầu trái đất được thay bằng mặt Elipxoid tròn xoay tạo bởi Elip có bán trục lớn a, bán trục nhỏ b và độ dẹt α quay quanh trục quay của trái đất. Vị trí các điểm trên bề mặt trái đất trong hệ tọa độ này cũng được xác định bởi độ vĩ trắc địa B, kinh độ trắc địa L và độ cao trắc địa H.

1.4. Phép chiếu bản đồ và hệ tọa độ vuông góc phẳng

1.4.1. Khái niệm về phép chiếu bản đồ

Mặt đất là mặt cong, để biểu diễn trên mặt phẳng sao cho chính xác, ít biến dạng nhất cần phải thực hiện theo một quy luật toán học nào đó gọi là phép chiếu bản đồ.

Để thực hiện phép chiếu bản đồ, trước tiên chiếu mặt đất tự nhiên về mặt chuẩn ( mặt cầu hoặc mặt Elipxoid), sau đó chuyển từ mặt chuẩn sang mặt phẳng. Tùy theo vị trí địa lý của từng nước mà có thể áp dụng các phép chiếu bản đồ chu phù hợp, trong giáo trình này chỉ trình bày khái niệm về một số phép chiếu hay được sử dụng.

1.4.2. Phép chiếu mặt phẳng và hệ tọa độ vuông góc quy ước

Khi vực đo vẽ nhỏ có diện tích nhỏ hơn 100 km2, sai số biến dạng phép chiếu bản đồ nhỏ nên có thể coi khu vực đó là mặt phẳng và các tia chiếu từ tâm trái đất là song song với nhau.

Nếu khu vực ấy nằm ở những nơi hẻo lánh, xa lưới khống chế nhà nước thì có thể giả định một hệ tọa độ vuông góc với trục OX là hướng bắc từ xác định bằng la bàn, trục OY vuông góc với trục OX và hướng về phía đông; gốc tọa độ là giao của hai trục và chọn ở phía tây nam của khu đo

1.4.3. Phép chiếu UTM và hệ tọa độ Quốc gia Việt Nam VN-2000

1.4.3.1. Phép chiếu UTM

Phép chiếu bản đồ UTM (Universal Transverse Mercator) là phép chiếu hình trụ ngang đồng góc và được thực hiện như sau:

- Chia trái đất thành 60 múi bởi các đường kinh tuyến cách nhau 6o, đánh số thứ tự các múi từ 1 đến 60 bắt đầu từ kinh tuyến gốc, ngược chiều kim đồng và khép về kinh tuyến gốc.

- Dựng hình trụ ngang cắt mặt cầu trái đất theo hai đường cong đối xứng với nhau qua kinh tuyến giữa múi và có tỷ lệ chiếu k = 1 (không bị biến dạng chiều dài). Kinh tuyến trục nằm ngoài mặt trụ có tỷ lệ chiếu k = 0.9996.

Dùng tâm trái đất làm tâm chiếu, lần lượt chiếu từng múi lên mặt trụ theo nguyên lý của phép chiếu xuyên tâm. Sau khi chiếu, khai triển mặt trụ thành mặt phẳng ( xem hình 1.4).

Phép chiếu UTM có ưu điểm là độ biến dạng được phân bố đều và có trị số nhỏ; mặt khác hiện nay để thuận tiện cho việc sử dụng hệ tọa độ chung trong khu vực và thế giới Việt Nam đã sử dụng lưới chiếu này trong hệ tọa độ Quốc gia VN-2000 thay cho phép chiếu Gauss-Kruger trong hệ tọa độ cũ HN-72.

1.4.3.2. Hệ tọa độ vuông góc phẳng UTM

Trong phép chiếu UTM, các múi chiếu đều có kinh tuyến trục suy biến thành đường thẳng đứng được chọn làm trục OX; xích đạo suy biến thành đường nằm ngang chọn làm trục OY, đường thẳng OX vuông góc với OY tạo thành hệ tọa độ vuông góc phẳng UTM trên các múi chiếu

Để trị số hoành độ Y không âm, người ta quy ước rời trục OX qua phía tây 500km và quy định ghi hoành độ Y có kèm số thứ tự múi chiếu ở phía trước (X = 2524376,437; Y = 18.704865,453). Trên bản đồ địa hình, để tiện cho sử dụng người ta đã kẻ những đường thẳng song song với trục OX và OY tạo thành lưới ô vuông tọa độ. Hệ tọa độ vuông góc phẳng UTM này được sử dụng trong hệ tọa độ VN-2000

1.4.3.3. Hệ tọa độ Quốc gia Việt Nam VN-2000

Hệ tọa độ VN-2000 được Thủ tướng Chính phủ quyết định là hệ là hệ tọa độ Trắc địa-Bản đồ Quốc gia Việt Nam và có hiệu lực từ ngày 12/8/2000. Hệ tọa độ này có các đặc điểm:

- Sử dụng Elipxoid WGS-84 (World Geodesic System 1984) làm Elip thực dụng, Elip này có bán trục lớn a = 6378137, độ det α = 1:298,2.

- Sử dụng phép chiếu và hệ tọa độ vuông góc phẳng UTM.

- Gốc tọa độ trong khuôn viên Viện Công nghệ Địa chính, Hoàng Quốc Việt, Hà Nội.

1.5. Hệ định vị toàn cầu GPS

Hệ định vị toàn cầu GPS (Global Positioning System) được Bộ Quốc phòng Mỹ triển khai từ những năm 70 của thế kỷ 20. Ban đầu, hệ thống này được dùng cho mục đích quân sự, sau đó đã được ứng dụng rộng rãi trong các lĩnh vực khác. Với ưu điểm nổi bật như độ chính xác, mức độ tự động hóa cao, hiệu quả kinh tế lớn, khả năng ứng dụng ở mọi nơi, mọi lúc, trên đất liền, trên biển, trên không…nên công nghệ GPS đã đem lại cuộc cách mạng kỹ thuật sâu sắc trong lĩnh vực trắc địa.

Ở Việt nam, công nghệ GPS đã được nhập vào từ những năm 1990 và đã được ứng dụng rộng rãi trong nhiều lĩnh vực. Trong trắc địa công nghệ GPS đã được ứng dụng để thành lập lưới tọa độ liên lục địa, lưới tọa độ quốc gia cho đến đo vẽ chi tiết bản đồ.

Công nghệ GPS cũng đã được ứng dụng trong trắc địa công trình để thành lập lưới khống trong đo vẽ bản đồ, thi công và quan trắc chuyển dịch biến dạng công trình. So với các phương pháp truyền thống thì ứng dụng GPS để thành lập lưới khống chế có ưu điểm nổi bật như: chọn điểm linh hoạt hơn, không cần thông hướng giữa các điểm, cạnh đo nhanh hơn và có thể đo cả ngày lẫn đêm, độ chính xác cao và từ đó hiệu quả cao hơn.

1.5.1. Nguyên lý định vị GPS

Các điểm mặt đất được định vị GPS trong hệ tọa độ địa tâm xây dựng trên Elipxoid WGS-84. Hệ tọa độ có gốc tọa độ O là tâm trái đất, trục OX là đường thẳng nối tâm trái đất với giao điểm kinh tuyến gốc cắt đường xích đạo; trục OY vuông góc với OX, trục OZ trùng với trục quay trái đất và vuông góc với mặt phẳng xoy

ta có mối quan hệ:

(1.1)

R

r -

S =

Trong đó:

vectơ R - là vectơ vị trí (XN, YN, ZN ) các điểm cần định vị trên mặt đất tại thời điểm “t” nào đó, đây chính là bốn ẩn số cần xác định đối với vị trí một điểm.

vectơ r – là vectơ vị trí ( Xv, Yv, Yv ) các vệ tinh trên quỹ đạo tại thời điểm “t” đã biết từ thông tin đạo hàng mà máy định vị thu được từ vệ tinh.

S - là khoảng cách giả từ điểm định vị đến vệ tinh mà máy định vị GPS đo được.

Như vậy để định vị một điểm ta cần lập và giải hệ phương trình tối thiểu phải có bốn phương trình dạng (1.1). Số phương trình lớn hơn bốn sẽ được giải theo nguyên lý số bình phương nhỏ nhất, vì vậy càng thu được tín hiệu của nhiều vệ tinh thì độ chính xác định vị càng cao.

1.5.2. Cấu trúc của hệ thống định vị toàn cầu GPS

Hệ thống định vị toàn cầu GPS gồm ba bộ phận: đoạn không gian, đoạn điều khiển và đoạn sử dụng.

1.5.2.1. Đoạn không gian(space segment)

Đoạn không gian gồm 24 vệ tinh phân bố trên 6 quỹ đạo gần tròn, trên mỗi quỹ đạo có 4 vệ tinh, mặt phẳng quỹ đạo nghiêng với mặt phẳng xích đạo 55o. Các vệ tinh bay trên các quỹ đạo cách mặt đất cỡ 20200km. Chu kỳ chuyển động của vệ tinh trên quỹ đạo là 718 phút (12giờ). Số lượng vệ tinh có thể quan sát được tùy thuộc vào thời gian và vị trí quan sát trên mặt đất, nhưng có thể nói rằng ở bất kỳ thời điểm và vị trí nào trên trái đất cũng có thể quan trắc được tối thiểu 4 vệ tinh và tối đa 11 vệ tinh.

Mỗi vệ tinh đều có đồng hồ nguyên tử có độ ổn định tần số 10-12, tạo ra tín hiệu với tần số cơ sở fo = 10,23Mhz , từ đó tạo ra sóng tải L1 = 154. fo = 1575,42Mhz ( λ=19cm) và L2 = 120. fo = 1227.60Mhz (λ = 24cm). Các sóng tải được điều biến bởi hai loại code khác nhau:

- C/A-code (Coarse/Accquition code), dùng cho mục đích dân sự với độ chính xác không cao và chỉ điều biến sóng tải L1. Chu kỳ lặp lại của C/A-code là 1 miligiây và mỗi vệ tinh được gắn một C/A code riêng biệt.

- P-code(presice code), được dùng cho quân đội Mỹ với độ chính xác cao, điều biến cả sóng tải L1 và L2. Mỗi vệ tinh chỉ được gắn một đoạn code loại này, do đó P-code rất khó bị giải mã để sử dụng nếu không được phép.

Ngoài ra cả lai sóng tải L1 và L2 còn được điều biến bởi các thông tin đạo hàng về: vị trí vệ tinh, thời qian của hệ thống, số hiệu chỉnh đồng hồ vệ tinh, quang cảnh phân bố vệ tinh trên bầu trời và tình trạng của hệ thống.

1.5.2.2. Đoạn điều khiển(control segment)

Gồm một trạm điều khiển trung tâm đặt tại căn cứ không quân Mỹ gần Colorado Spring và bốn trạm quan sát đặt tại: Hawai(Thái bình dương), Assention Island(Đại tây dương), Diego Garcia(Ấn độ dương) và Kwajalein(Tây Thái bình dương).

Các trạm quan sát đều có máy thu GPS để theo dõi liên tục các vệ tinh, đo các số liệu khí tượng và gửi số liệu này về trạm trung tâm. Số liệu các trạm quan sát được trạm trung tâm xử lý cùng với số liệu đo được của bản thân nó cho thông tin chính xác về vệ tinh, số hiệu chỉnh đồng hồ. Các số liệu này được phát trở lại các vệ tinh, công việc chính xác hóa thông tin được thực hiện 3 lần trong một ngày.

1.5.2.3. Đoạn sử dụng(User segment)

Đoạn này gồm các máy móc thiết bị thu nhận thông tin từ vệ tinh để khai thác sử dụng. Đó có thể là máy thu riêng biệt, hoạt động độc lập (định vị tuyệt đối) hay một nhóm từ hai máy trở lên hoạt động đồng thời ( định vị tương đối) hoặc hoạt động theo chế độ một máy thu đóng vai trò máy chủ phát tín hiệu hiệu chỉnh cho các máy thu khác ( định vị vi phân).

1.5.2.4. Các phương pháp định vị GPS

- Định vị tuyệt đối

Định vị tuyệt đối là dựa vào trị đo khoảng cách từ vệ tinh đến máy thu GPS để xác định trực tiếp vị trí tuyệt đối của Anten máy thu trong hệ tọa độ WGS-84. Độ chính xác của định vị tuyệt đối khoảng 10m đến 40m.

Định vị tuyệt đối chia thành định vị tuyệt đối tĩnh và định vị tuyệt đối động, " tĩnh " hay " động " là nói trạng thái của Anten máy thu trong quá trình định vị.

- Định vị tương đối

Định vị tương đối là trường hợp dùng hai máy thu GPS đặt ở hai điểm khác nhau, quan trắc đồng bộ các vệ tinh để xác định vị trí tương đối giữa chúng (Δx, Δy, Δz) trong hệ WGS-84, nếu biết tọa độ một điểm thì sẽ tính được tọa độ điểm kia. Độ chính xác định vị tương đối cao hơn rất nhiều so với định vị tuyệt đối.

- Định vị vi phân

Trong định vị vi phân, một máy đặt tại một điểm đã biết tọa độ (trạm gốc), các máy thu khác đặt tại các điểm cần xác định tọa độ(trạm đo). Dựa vào độ chính xác đã biết của trạm gốc, tính số hiệu chỉnh khoảng cách từ trạm gốc đến vệ tinh và hiệu chỉnh này được máy GPS ở trạm gốc phát đi. Máy trạm đo trong khi đo đồng thời vừa thu được tính hiệu vệ tinh và số hiệu chỉnh của trạm gốc và tiền hành hiệu chỉnh kết quả định vị, chính vì thề nâng cao được độ chính xác định vị. 

1.6. Định hướng đường thẳng

Muốn biểu thị một đoạn thẳng lên bản đồ ngoài độ dài còn phải biết phương hướng của nó. Việc xác định hướng của một đường thẳng so với một hướng gốc nào đó gọi là định hướng đường thẳng. Trong trắc địa tùy theo điều kiện cụ thể ta có thể chọn hướng gốc là hướng bắc kinh tuyến thực, kinh tuyến từ hoặc hình chiếu các kinh tuyến trục làm hướng gốc. Tương ứng với các hướng gốc đó ta có các góc định hướng là góc phương vị thực (A), phương vị từ(At), góc định hướng(α).

1.6.1.Góc phương vị

Góc phương vị của một đường thẳng là góc bằng tính từ hướng bắc kinh tuyến, thuận chiều kim đồng hồ đến hướng đường thẳng

Có hai loại góc phương vị, nếu hướng gốc là hướng bắc kinh tuyến thực ta sẽ có góc phương vị thực A còn nếu hướng gốc là hướng bắc kinh tuyến từ sẽ có góc phương vị từ At. Quan hệ giữa hai loại góc phương vị này là:

A = At ± δ ( 1.2 )

Trong đó δ là độ chênh lệch từ, lấy dấu + khi kinh tuyến từ từ lệch về đông kinh tuyến thực và lấy dấu - khi kinh tuyến từ lệch về tây kinh tuyến thực.

Trên cùng một đường thẳng, tại các điểm khác nhau góc phương vị có trị số lệch nhau một lượng bằng độ hội tụ kinh tuyến γ.

A2 = A1 ± γ với γ = Δλ sinϕ (1.3)

Góc phương vị nhận giá trị từ (0 ~ 360)o. Nếu nhìn theo hướng cho trước của đường thẳng ta có góc định hướng là góc phương vị thuận, còn nếu nhìn ngược hướng với hướng đường thẳng cho trước sẽ có góc phương vị ngược, trị số góc định hướng thuận và ngược lệch nhau đứng bằng 180o.

A' = A ± 1800 (1.4)

Góc phương vị dùng để định hướng đường thẳng trên mặt đất. Hướng của đường băng, hướng di chuyển của tâm bão hoặc hướng đi của tầu trên biển dùng là góc phương vị.

1.6.2. Góc định hướng

1.6.2.1. Khái niệm

Góc định hướng của một đường thẳng là góc bằng tính từ hướng bắc của hình chiếu kinh tuyến trục hoặc các đường thẳng song song với nó theo chiều thuận kim đồng hồ tới hướng đường thẳng, nhận giá trị từ 0-360o.

Góc định hướng của đường thẳng NM ký hiệu là αNM. Vì hướng bắc của hình chiếu kinh tuyến trục nhận là trục OX nên góc định hướng cũng được tính từ hướng bắc trục OX hoặc hướng bắc của các đường thẳng song song với OX.

Góc định hướng của một đường thẳng đều có trị số như nhau tại mọi điểm của nó. Ta cũng có góc định hướng thuận và ngược, trị số của chúng lệch nhau 180o. Quan hệ giữa các yếu tố định hướng đường thẳng:

A = At + δ ; A = α + γ ⇒ α = At + δ - γ (1.5)

Để hỗ trợ cho việc tính góc định hướng trong bài toán trắc địa ngược, người ta còn sử dụng góc hai phương (r). Góc hợp bởi hướng bắc hoặc nam so với đường thẳng sao cho trị số của nó luôn nhỏ hơn hoặc bằng 90o. Ta có quan hệ giữa góc định hướng và hai phương:

α = r ( cung phần tư I ) α = 1800 + r ( cung phần tư III ) (1.6)

α = 1800 - r (cung phần tư II ) α = 3600 - r (cung phần tư IV )

1.6.2.2. Bài toán tính chuyền góc định hướng

Giả sử trên mặt phẳng tọa độ XOY có các góc kẹp giữa các đoạn thẳng d0, d1, d2...

tương ứng là β1, β2, β3...

α1 = α0 + β1 - 180 độ, α2 = α1 - β2 + 180 độ, . . .

αi = αi-1 ± βi ± 180 độ

Bạn đang đọc truyện trên: Truyen2U.Net